1

The number of rows n, is to be taken from the user.

- 3. Write a program to compute the factors of a given number.
- 4. Write a menu driven program to perform the following operations on an array:
  - a. Find the minimum, maximum and average of the array elements
  - b. Search an element in the array using linear and binary search
- 5. Write a menu driven program to perform the following operations on a string:
  - a. Calculate length of the string
  - b. Check whether the first character of every word in the string is in uppercase or not
  - c. Reverse the string
- 6. Create a class Triangle. Include overloaded functions for calculating the area of a triangle.
- 7. Create a template class TwoDim which contains x and y coordinates. Define default constructor, parameterized constructor and void print() function to print the co-ordinates. Now reuse this class in ThreeDim adding a new dimension as z. Define the constructors and void print() in the subclass. Implement main() to show runtime polymorphism.

# **GE1b:** Programming with Python

## **Course Objective**

The course is designed to introduce programming concepts using Python to students. The course aims to develop structured as well as object-oriented programming skills using Python. The course also aims to achieve competence amongst its students to develop correct and efficient Python programs to solve problems in their respective domains.

## **Course Learning Outcomes**

On successful completion of the course, students will be able to:

- 1. Write simple programs using built-in data structures in Python.
- 2. Implement arrays and user defined functions in Python.
- 3. Solve problems in the respective domain using suitable programming constructs in Python.
- 4. Solve problems in the respective domain using the concepts of object oriented programming in Python.

## Syllabus

**Unit 1 Introduction to Programming:** Problem solving strategies; Structure of a Python program; Syntax and semantics; Executing simple programs in Python.

**Unit 2 Creating Python Programs:** Identifiers and keywords; Literals, numbers, and strings; Operators; Expressions; Input/output statements; Defining functions; Control structures (conditional statements, loop control statements, break, continue and pass, exit function), default arguments.

**Unit 3 Built-in data structures:** Mutable and immutable objects; Strings, built-in functions for string, string traversal, string operators and operations; Lists creation, traversal, slicing and splitting operations, passing list to a function; Tuples, sets, dictionaries and their operations.

**Unit 4 File and exception handling:** File handling through libraries; Errors and exception handling.

## References

- 1. Taneja, S., Kumar, N., *Python Programming- A modular Approach*, Pearson Education India, 2018.
- Balaguruswamy E., Introduction to Computing and Problem Solving using Python, 2nd edition, McGraw Hill Education, 2018.

#### **Additional References**

- (i) Brown, Martin C., *Python: The Complete Reference*, 2<sup>nd</sup> edition, McGraw Hill Education, 2018.
- (ii) Guttag, J.V. Introduction to computation and programming using Python, 2<sup>nd</sup>

edition, MIT Press, 2016.

#### **Suggested Practical List**

- 1. WAP to find the roots of a quadratic equation.
- 2. WAP to accept a number 'n' and
  - a. Check if 'n' is prime
  - b. Generate all prime numbers till 'n'
  - c. Generate first 'n' prime numbers
  - d. This program may be done using functions.
- 3. WAP to create a pyramid of the character '\*' and a reverse pyramid

| *      |        |
|--------|--------|
| ***    |        |
| ****   |        |
| ****** |        |
| ****** |        |
|        |        |
|        | ****** |
|        | *****  |
|        | *****  |
|        | ***    |
|        | *      |

- 4. WAP that accepts a character and performs the following:
  - a. print whether the character is a letter or numeric digit or a special character
  - b. if the character is a letter, print whether the letter is uppercase or lowercase
  - c. if the character is a numeric digit, prints its name in text (e.g., if input is 9, output is NINE)
- 5. WAP to perform the following operations on a string
  - a. Find the frequency of a character in a string.
  - b. Replace a character by another character in a string.
  - c. Remove the first occurrence of a character from a string.
  - d. Remove all occurrences of a character from a string.
- 6. WAP to swap the first n characters of two strings.
- 7. Write a function that accepts two strings and returns the indices of all the occurrences of the second string in the first string as a list. If the second string is not present in the first string then it should return -1.
- 8. WAP to create a list of the cubes of only the even integers appearing in the input list (may have elements of other types also) using the following:
  - a. 'for' loop
  - b. list comprehension
- 9. WAP to read a file and
  - a. Print the total number of characters, words and lines in the file.
  - b. Calculate the frequency of each character in the file. Use a variable of dictionary type to maintain the count.
  - c. Print the words in reverse order.
  - d. Copy even lines of the file to a file named 'File1' and odd lines to another file named 'File2'.
- 10. Write a function that prints a dictionary where the keys are numbers between 1 and 5 and the values are cubes of the keys.
- 11. Consider a tuple t1=(1, 2, 5, 7, 9, 2, 4, 6, 8, 10). WAP to perform following operations:
  - a. Print half the values of the tuple in one line and the other half in the next line.
  - b. Print another tuple whose values are even numbers in the given tuple.

- c. Concatenate a tuple t2=(11,13,15) with t1.
- d. Return maximum and minimum value from this tuple
- 12. WAP to accept a name from a user. Raise and handle appropriate exception(s) if the text entered by the user contains digits and/or special characters.

#### GE2a: Data Analysis and Visualization using Python

### **Course Objective**

This course is designed to introduce the students to real-world data analysis problems, their analysis and interpretation of results in the field of exploratory data science using Python.

### **Course Learning Outcomes**

On successful completion of the course, students will be able to:

- 1. Apply descriptive statistics to obtain a deterministic view of data
- 2. Perform data handling using Numpy arrays
- 3. Load, clean, transform, merge and reshape data using Pandas
- 4. Visualize data using Pandas and matplot libraries

#### Syllabus

**Unit 1 Introduction to basic statistics and analysis:** Fundamentals of Data Analysis, Statistical foundations for Data Analysis, Types of data, Descriptive Statistics, Correlation and covariance, Linear Regression, Statistical Hypothesis Generation and Testing, Python Libraries: NumPy, Pandas, Matplotlib

**Unit 2 Array manipulation using Numpy:** Numpy array: Creating numpy arrays, various data types of numpy arrays, indexing and slicing, swapping axes, transposing arrays, data processing using Numpy arrays

**Unit 3 Data Manipulation using Pandas:** Data Structures in Pandas: Series, DataFrame, Index objects, Loading data into Pandas data frame, Working with DataFrames: Arithmetics,